HAND OUT 01: NC PROGRAMMING NOTES

The following NC codes are commonly found in CNC programs for machining:

G Words

G00	Rapid traverse
G01	Linear interpolation
G02	Circular interpolation, CW
G03	Circular interpolation, CCW
G04	Dwell (non-modal)
G05	Hold until operator restarts
G06	Parabolic interpolation
G07	unassigned EIA - reserved
G08	Acceleration (non-modal)
G09	Deceleration (non-modal)
G10-12	unassigned EIA
G13-16	Axis selection
G17	X-Y Plane
G18	X-Z Plane
G19	Y-Z Plane
G20-24	unassigned EIA
G25-29	unassigned - available for individual use
G30-32	unassigned EIA
G33	Thread cutting, constant lead
G34	Thread cutting, increasing lead
G35	Thread cutting, decreasing lead
G36-39	unassigned - available for individual use
G40	Cutter compensation, cancel
G41	Cutter compensation, left
G42	Cutter compensation, right
G43	Cutter compensation, inside corner
G44	Cutter compensation, outside corner
G45-49	unassigned EIA

G50	Reserved for adaptive control (non-modal)
G51	Cutter compensation, +/0 (non-modal)
G55	Cutter compensation, -/0 (non-modal)
G53	Linear shift, cancel
G54	Linear shift, X
G55	Linear shift, Y
G56	Linear shift, Z
G57	Linear shift, XY
G58	Linear shift, XZ
G59	Linear shift, YZ
G60-69	unassigned EIA
G70	Inch format
G71	Metric format
G72	Circular interpolation, CW (3-D)
G73	Circular interpolation, CCW (3-D)
G74	Multi-quadrant circle interpolation, off
G75	Multi-quadrant circle interpolation, on
G76-79	unassigned EIA
G80	Fixed-cycle, off
G81-89	Fixed cycles (manufacturer dependent)
G90	Absolute positioning
G91	Incremental positioning
G92	Set origin of coordinate system (non-modal)
G93	Inverse time feed rate (V/D)
G94	Inches (mm) per minute feed rate
G95	Inches (mm) per revolution feed rate
G96	Constant surface speed feet (m) per minute
G97	Revolutions per minute
G98-99	unassigned EIA

G51 Cutter compensation, +/0 (non-modal)
G52 Cutter compensation, -/0 (non-modal)
Linear shift, cance
G55 Linar shif, X
G56 Linear shift, Z
G57 Linear shift, XY
G58 Linear shift, XZ
G59 Linear shift, YZ
G60-69 unassigned EIA
G70 Inch format
G71 Metric format
G72 Circular interpolation, CW (3-D)
G73 Circular interpolation, CCW (3-D)
Multi-quadrant circle interpolation, off
G76-79 unassigned EIA
G80 Fixed-cycle, off
G81-89 Fixed cycles (manufacturer dependent)
G90 Absolute positioning
Incremental positioning
Inverse time feed rate (V/D)
Inches (mm) per minute feed rate
Inches (mm) per revolution feed rate
Constant surface speed feet (m) per minute
Revolutions per minute
G98-99 unassigned EIA

Circular interpolation occurs within a plane, and is specified by a block containing the following (in order):

1. Plane code (G word)
2. Direction code (G word)
3. $1^{\text {st }}$ destination coordinate (X or Y word)
4. $2^{\text {nd }}$ destination coordinate (Y or Z word)
5. $1^{\text {st }}$ incremental coordinate for arc center, from initial tool position (I or J word)
6. $2^{\text {nd }}$ incremental coordinate for arc center, from initial tool position (J or K word)
7. Feed word (if necessary)

X,Y, Z (A, B, C) Words

These words provide coordinates for the axes of motion. A, B, and C specify rotation about the X, Y, and Z axes, respectively.

I, J, K Words

These specify the coordinates for the arc/circle center, always incrementally from the initial tool position (for circular interpolation).

F Words

Specify the feed rate or thread lead.

S Words

Specify the spindle speed.

R* Words

These are words used to specify the radius of an arc/circle (for circular interpolation) (*highly machine dependent).

T Words

Specify the tool number (turret position) to use. If more than two digits, are used, the second two digits are the offset number.

M Words

M00 Program stop (non-modal) (command starts after current block)
M01 Optional stop (non-modal) (command starts after current block)
M02 End of program (non-modal) (command starts after current block)
M03 Start spindle, CW
M04 Start spindle, CCW
M05 Stop spindle (command starts after current block)
M06 Change tool
M07 Coolant 1 on
M08 Coolant 2 on
M09 Coolant off (command starts after current block)
M10 Clamp
M11 Unclamp
M12 Synchronization code (command starts after current block)
M13 Start spindle, CW and coolant on
M14 Start spindle, CCW and coolant on
M15 Motion in positive direction (non-modal)
M16 Motion in negative direction (non-modal)
M17-18 unassigned EIA
M19 Oriented spindle stop
M20-29 unassigned EIA - available for individual use
M30 End of tape/data, rewind (command starts after current block)
M31 Interlock bypass
M32-35 unassigned EIA
M36-39 unassigned EIA - available for individual use
M40-46 unassigned EIA - machine dependent
M47 Return to program start (non-modal)
M48 Cancel M49
M49 Feed/speed bypass override
M50-57 unassigned EIA
M58 Cancel M59
M59 Bypass constant surface speed updating
M60-89 unassigned EIA
M90-99 Reserved for user
The usual steps in generating NC code files are:

1. A part model is created using a CAD system.
2. The CAD part model is transferred to a CAM system (unless integrated with the CAD program).
3. The geometry of the work piece stock is specified.
4. The paths, tools, feeds, speeds, and depth of cuts for each machining pass are specified.
5. The CAM software generates a CL (cutter location) data file (often APT-like).
6. A post-processor reads the CL data file, and generates the NC code specific to the machine tool controller.

The NC code is transferred (often by RS-232 link) to the machine tool controller, where the operator initiates production of the part on the machine tool. With the spread of more capable CAD/CAM packages, it has become uncommon for the engineer to do much manual NC programming. However, editing NC code is a common task.

Example NC Problem

The following workpiece is to have a finishing pass around its periphery (see Figure 1). The pertinent machining data is: (a) cutter diameter is 0.25 inches; (b) feed rate is 6 inches per minute; (c) cutting speed is 300 surface feet per minute; (d) the tool home position is at $(2,2,8)$; and (e) the part home position is at $(4,4,0)$, referencing the lower*, left corner of the top of the workpiece. (Adapted from Chang, T. C., Wysk, R. A., \& Wang, H. P. (1991). Computer-Aided Manufacturing. Englewood Cliffs, NJ: Prentice-Hall. pp. 253-255.)

Figure 1. Workpiece for NC machining.

Geometry Calculations

$$
\begin{aligned}
& \text { P1: } \quad x=4-1 / 2(0.25)=\underline{\underline{3.8750}} \\
& y=4-1 / 2(0.25) \tan 67.5^{\circ}=\underline{3.6982} \\
& \text { P2: } \quad \mathrm{x}=P 1_{x}=\underline{\underline{3.8750}} \\
& y=4+5+1 / 2(0.25)=\underline{\underline{9.1250}} \\
& \text { P3: } \quad \mathrm{x}=4+2.5-1+1 / 2(0.25)=\underline{\underline{5.6250}} \\
& \mathrm{y}=P 2_{y}=\underline{\underline{9.1250}} \\
& \text { P4: } \quad \mathrm{x}=P 3_{x}=\underline{\underline{5.6250}} \\
& y=9.125-1 / 2(0.25)=\underline{\underline{9.0000}} \\
& \text { P7: } \quad \begin{aligned}
& \mathrm{x}=P 6_{x}=\underline{7.3750} \\
& \mathrm{y}=P 3_{y}=\underline{\underline{9.1250}}
\end{aligned} \\
& \text { P8: } \quad x=4+5+1 / 2(0.25) \tan 67.5^{\circ}=\underline{\underline{9.3018}} \\
& \mathrm{y}=P 7_{y}=\underline{\underline{9.1250}}
\end{aligned}
$$

Table of Cutter Locations

| | Absolute Coordinates | | | Incremental Coordinates* | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Position | X | \mathbf{Y} | \mathbf{Z} | \mathbf{I} | \mathbf{J} |
| P0 | 2.0000 | 2.0000 | 8.0000 | | |
| P1 | 3.8750 | 3.6982 | 0.0000 | | |
| P2 | 3.8750 | 9.1250 | 0.0000 | | |
| P3 | 5.6250 | 9.1250 | 0.0000 | | |
| P4 | 5.6250 | 9.0000 | 0.0000 | | |
| P5 | 6.5000 | 8.1250 | 0.0000 | 0.8750 | 0.0000 |
| P6 | 7.3750 | 9.0000 | 0.0000 | 0.0000 | 0.8750 |
| P7 | 7.3750 | 9.1250 | 0.0000 | | |
| P8 | 9.3018 | 9.1250 | 0.0000 | | |

* Circular interpolation coordinates are incremental from initial cutter position.

NC Program Listing

N010	G90	F6.0	S4584	M03		
N020	G00	X3.8750	Y3.6982	Z0.0000		
N030	G01	X3.8750	Y9.1250	Z0.0000		
N040	G01	X5.6250	Y9.1250	Z0.0000		
N050	G01	X5.6250	Y9.0000	Z0.0000		
N060	G03	X6.5000	Y8.1250	Z0.0000	I0.8750	J0.0000
N070	G03	X7.3750	Y9.0000	Z.0000	I0.0000	J0.8750
N080	G01	X7.3750	Y9.1250	Z0.0000		
N090	G01	X9.3018	Y9.1250	Z0.0000		
N100	G01	X3.8750	Y3.6982	Z0.0000		
N110	G00	X2.0000	Y2.0000	Z8.0000	M05	M02

Absolute positioning mode, start up
Go rapid to $P 1$
Go linear to $P 2$
Go linear to $P 3$
Go linear to $P 4$
Go CCW to $P 5$ - qtr. circle interp.
Go CCW to P6 - qtr. circle interp.
Go linear to $P 7$
Go linear to $P 8$
Go linear to $P 1$
Go rapid to $P 0$, stop spindle, rewind

